
THE CULTURAL IMPACT OF MATHEMATICS

UNIT II : MATHEMATICS AND MUSIC

Chapter 1 - Acoustics 

Part of the joy of attending a symphonic concert is to enter a well 

designed auditorium that is both visually and aurally pleasing. Both 

qualities should be independent of where one sits. The price of tickets 

is normally a function of distance from the stage. We pay more in order 

to see better. However, we all know through sometimes bitter experience 

that no matter how much care is given to the acoustical design of a hall, 

there will sometimes be "dead" spots. To minimize this problem and others 

which plague audition, there now exists a close cooperative bond between 

the architect and the acoustical engineer. 

(Figure 1) shows a schematic of the Pleyel Concert Hall that is

generally acknowledged to be one of the finest in the world. (L1):

http://www.sallepleyel.fr/anglais/la_salle/visite_virtuelle/index.aspYet, prior 

to 1900 there was little scientific knowledge as to what constituted a good 

design for an auditorium. Since then, experiments have been conducted to 

isolate the variables involved in the transmission of sound waves within an 

enclosed structure. Generalizations have been established which are ex-

pressible in mathematical formulas and at least these are available for 

guidance in construction. 

As we shall see these are not always fool-proof. Concert hall con-

struction is still an elusive art and everyone involved still holds his breath 

until the end of the first fully attended performance. To consider some of the 

problems we shall begin with the production of a pure tone. (Figure 2) (S1) 
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illustrates the vibration; of a tuning fork. 

http://www.culturalmath.com/media/Sound-01.mp3

The fork vibrates at a certain fixed frequency.

Figure 1

2

http://www.culturalmath.com/media/Sound-01.mp3


The frequency is defined as the number of complete vibrations or cycles 

per second. A complete cycle is generated as the prongs of the fork move 

to the right, left and back to the position of equilibrium or rest. These vibra-

tions cause the air molecules surrounding the fork to compress and expand 

in waves. As a result, the vibrations are communicated in ever widening 

spheres to the air molecules further away. At normal room temperatures, 

this sound wave travels at a speed of 1100 feet per second. 

Owing to widening distribution of energy, the intensity of the sound 

(that is, its loudness) diminishes inversely as the square of the distance 

from the source. Thus, if there were no other factors operating, a person 

sitting twice as far from a sound source would receive only one-fourth of its 

intensity. In an outdoor concert, this dissipation of energy is a critical factor. 

To offset this problem large shells are constructed behind the outdoor or-

chestra to reflect and focus the orchestra's sounds at the audience. 

(Figure 3).

The ancient Greeks were well versed in the reflecting properties of 

curved surfaces  Their most successful outdoor theaters were built in the 

form of half-bowls and "tuned" so precisely that it is possible to hear the 
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Figure 2
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                                                 Figure 3
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strike of a match from the orchestra platform while sitting on the top tier of 

benches.1 (Figure 4)

Figure 4
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Inside an enclosed room, the problem may be exactly reversed. To 

demonstrate this it is only necessary to compare the free vibrations of a 

tuning fork with that of a tuning fork placed to vibrate on top of an enclosed 

box. The sound of the latter will be greatly amplified. This is because the vi-

brations of the fork have been transmitted to the box and the air inside the 

box. What results is called resonation. It is exactly the same effect that oc-

curs when the vibrations of the string of a violin are communicated to the 

sound box of the instrument. The sound is greatly amplified. (S2) (Figure 5)

 http://www.culturalmath.com/media/Sound-02.mp3
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Again, the Greeks understood the principle of resonation also and 

“..placed vases of bronze or pottery about a theater, with their open ends 

pointing towards the orchestra, to act as resonators. ..”2 

Similarly, in a concert hall, the walls, ceiling, and floor will receive 

sounds and by resonation and reflection contribute to their audibility 

throughout the hall. Sitting in a hall, we not only receive sounds directly 

from the orchestra but are continually bombarded by reflections from every 

direction. (Figure 6)

Figure 6
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Another variable of acoustics is known as reverberation, which is de-

scribed as “the persistence of audible sound after the source has ceased to 

operate.”3  (Figure 7) shows the great conductor, Arturo Toscanini,     

(L2):   http://en.wikipedia.org/wiki/Toscanini

conducting the NBC Symphony Orchestra in the acoustically notorious Stu-

dio 8H of the NBC Broadcasting Company. Recordings made in this studio 

sound dry, clear, and somewhat muffled. The orchestra sounds smaller in 

these recordings than it does in some of the later ones made in Carnegie 

Hall, where the sound is fuller and more brilliant.  Listen to the following re-

cordings of Toscanini with the NBC Symphony.  The first excerpt is   

from a live performance in Studio 8H of the 3rd movement of Haydn’s Sin-

fonia Concertante.  The second excerpt, the 3rd movemdnt of Brahms’ 

Symphony No. 2 was recorded in Carnegie Hall. (S3 & S4). 

Figure 7                                          
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The differences can be attributed to the different periods of reverbera-

tion of the two halls. Reverberation is not only important to the listener. It 

also has a remarkable effect on the performer who depends upon acoustic-

al feedback as a stimulus to his performance.  A pioneer in the field of ar-

chitectural acoustics, W. C. Sabine, derived an empirical formula for rever-

beration:   http://www.culturalmath.com/media/Sound-03.mp3

http://www.culturalmath.com/media/Sound-04.mp3

         T = kV/A   where T is the time of reverberation,   
         V is the volume of the room,   

  A is the total absorption of all of the surfaces,   
                   k = .05 if measurement is in feet, and   
                   k = .16 if measurement is in meters.  

The quantity A is determined by analyzing each surface in the room for its 

coefficient of absorption which varies with different material, and then using 

the calculus, the process of integration is performed over the surface. A 

range of T between 1.4 and 2.2 seconds has been found ideal for large fully 

occupied concert halls. For music which demands clarity of line for its effect 

(i.e. Mozart), the shorter period of reverberation is desirable, while for mu-

sic of the Romantic period which is dependent upon lush harmonies and 

massive sounds, the longer reverberation is more suitable. 

The architectural design is also an important factor (Figure 8) For ex-

ample the new Papal Audience Hall at the Vatican built by the architect, 

Nervi, uses the parabolic arch to focus sound from the stage out to the 

audience. The reflective properties of the parabola are shown in (Figure 9). 

The marvel of the Audience Hall is the great expanse which is covered 

without evidence of supporting interior columns.  

(L3) :  http://en.wikipedia.org/wiki/Paul_VI_Audience_Hall
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Figures 8
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Figure 9
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There are problems with any curved surfaces however. Care must be 

taken that some sounds do not build up and mask others. This is accom-

plished by diffusion, the breaking up of sound waves by irregular surfaces. 

In highly decorative halls built in the Baroque style, there is usually excel-

lent diffusion of sound because of the exorbitant use of statuary and orna-

mentation (Figure 10). 

Figure 10
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In the Baptistry of Pisa (Figure 11), we have an example of a very re-

verberant building. In his excellent book, Science and Music, Sir James 

Jeans wrote: "Except for its windows, the interior is almost entirely of 

marble .... The floor is circular with a diameter of 100 feet and the roof is 

conical with an extreme height of 179 feet. If the interior surface were en-

tirely of marble •.• the room would have a reverberation period of 100 

seconds--sound would persist for a minute and a half. Under actual condi-

tions, the observed reverberation period is 11 or 12 seconds. In this room, 

a man may sing a sequence of notes staccato and hear them combined 

into a chord for many seconds afterward...”4 

Figure 11
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One of the most famous or infamous, depending upon your point of 

view, passages in the history of acoustical engineering took place in the 

construction of Philharmonic Hall (now known as Avery Fisher Hall) which 

houses the New York Philharmonic: In these early photographs (Figure 12 

&12a), the ceiling panels can be seen which could be raised and lowered to 

provide adjustments to the period of reverberation. In tuning the hall it was 

necessary to fill the seats with padded cushions to simulate the absorption 

effect of the audience. The ceiling panels were finally abandoned and re-

placed by a conventional ceiling when it was determined that they were un-

able to produce an adequate reflection of sounds coming from the stage. 

Unfortunately, these compromises did not solve the basic acoustical prob-

lems that were inherent in the fundamental design. Eventually after years of 

aural anguish, the entire interior was rebuilt and the hall is now worthy to be 

called the home of the Philharmonic (Figure 13). 

http://en.wikipedia.org/wiki/Avery_Fisher_Hall
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Figure 12
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Figure 12a and   Figure 13
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As the players of an orchestra file on stage and take their seats, a fa-

miliar cacophony begins that marks the prelude to any concert. The players 

are warming up literally. This is particularly true of the wind players who 

produce their tones by bringing carefully designed columns of air into vibra-

tion. In order to play with correct intonation, these air columns must be 

brought up to playing temperature. In addition, all of the players are warm-

ing up the great variety of finely trained muscles that are needed in the per-

fection of instrumental technique. 

The appearance of the concertmaster, the first violinist, begins the 

traditional and very necessary ceremony of tuning the orchestra. Wrapping 

his bow for silence, he then signals the oboe player to intone the standard 

pitch for the tone A. Internationally, this has been established at 440 cycles 

per second (cps). The oboist may not play that frequency exactly, but he 

will be very close to it. One of the reasons the oboe is selected for this role 

is that its pitch can vary, but very slightly. Also, it has a clear and piercing 

tone quality that makes it ideal as a reference standard to be heard 

throughout the orchestra, the woodwinds adjust their A by slight corrections 

in their mouthpieces while the brass players adjust the tubing leading to the 

valves of their instruments. (S5) (L5) 

http://www.culturalmath.com/media/Sound-05.mp3

http://www.exploratorium.edu/music/movies/tuning_hi.html

The string players all have A strings that can be tuned by turning the 

pegs around which the strings are wrapped. On the violin, the remaining 

strings are tuned in the following manner (Figure 14)  (S6):

http://www.culturalmath.com/media/Sound-06.mp3

         

18

http://www.culturalmath.com/media/Sound-06.mp3
http://www.exploratorium.edu/music/movies/tuning_hi.html
http://www.culturalmath.com/media/Sound-05.mp3


Figure 14                 
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 When the violinist tucks the instrument under his chin, the lowest 

sounding string, the G string, is closest to him, the E string is furthest away. 

Satisfied that the A string is matched to the frequency of the oboe, the viol-

inist bows across the two middle strings, D and A, adjusting the peg for the 

D string until he hears the pure sound of the musical interval known as the 

perfect fifth. The name given to the interval will be explained shortly, but for 

now we shall concentrate on the ratio of the frequencies between the two 

tones D and A. Musicians are trained to identify the sound of this interval 

which is in its purest form when the frequency of the tone D is exactly 2/3 of 

the frequency of the tone A. If 440 cps is multiplied by 2/3, the result is 293 

1/3 cps. 

Next, the G and D strings will be bowed to create a perfect fifth 

between them. The G string is in tune when its frequency is exactly 2/3 that 

of the D string. Multiplying 293 1/3 by 2/3 yields 195 5/9. The actual num-

ber is unimportant to the violinist since it is impossible to count the actual 

number of cycles by ear. What is important is that the G and D sound har-

monically identical as the D and A when they are sounded together. Finally, 

the highest sounding string, the E string, is tuned as a perfect fifth above 

the A string. The E string then has a frequency that is 3/2 times the fre-

quency of the A string. Therefore, it vibrates at 660 cps. When all of the 

strings are in tune their frequencies form a geometric sequence from G, the 

lowest sounding string, to E, the highest sounding string. Each tone in the 

sequence is obtained by multiplying by the common ratio of 3/2. 

Tone:             G                    D                   A                  E 

Frequency: 195 5/9          293 1/3           440              660 
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The sequence is independent of the actual frequencies. The only thing con-

stant about this sequence is the common multiplier 3/2, which is the stand-

ard ratio for the perfect fifth musical interval. Pythagoras is supposed to 

have discovered this fact about 2500 years ago. He extended the se-

quence to cover seven tones in the following manner. (In modern notation, 

the first seven letters of the alphabet are used to designate musical tones. 

In the sequence of fifths however, they do not appear in alphabetical order. 

Tone:            F          C          G          D          A          E          B 

Frequency: 86.9    130.4   195.6    293.3     440      660       990 

All frequencies henceforth will be expressed in decimal notation and roun-

ded off to tenths. 

The sequence above will now be used to construct what is called a 

Pythagorean scale. The scale to be chosen is called the C Major scale and 

is the first scale that a beginning piano student would normally encounter 

because it makes use of the white keys only (Figure 15).  (S7)

http://www.culturalmath.com/media/Sound-07.mp3

The first fact that must be taken into account is that scales are nor-

mally fitted into the dimension of a single octave. In Figure 15, the octave 

span to be selected is shown by bold-faced letters. The C Major scale be-

gins with the tone C (the selected note is here called "middle C" on the pi-

ano because it roughly separates the set of tones usually played by the left 

hand from those played by the right hand). On the piano the scale steps to 

the right in alphabetical order: D, E, F, G. After G, the alphabet commences 

again, in this case with the standard tone A of 440 cps. This is followed by 

the tone B and the octave span is completed with the tone shown as lower-
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case c. All of these tones lie between a C(260.8 cps) and its octave, 

c(521.6 cps) which is twice its frequency. 

Figure 15                                
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To our ears the first tone C and its octave, c, sound melodically 

identical. This is the reason why men and women can sing the same 

melody together even though the frequencies of the tones they are singing 

are usually an octave apart. Without this octave repetition of tones, the 

transposition of melodies throughout the frequency ranges of orchestral in-

struments would be an impossibility. The octave with its interval ratio of 1:2 

is the simplest harmonic interval and for reasons to be explained later, 

tones an octave apart in frequency are interpreted as identical for melodic 

purposes. 

The scale must be constructed with the octave principle in mind. 

The derivation begins with the standard pitch for A (440 cps). It lies 

between the two C's. So does D at 293.3 cps (refer to the sequence of 

fifths above). The other tones in the sequence of fifths must be "trans-

posed" into the octave span. That is, we must find octave replicas of these 

tones within the frequency boundaries of the two C's. This is achieved by 

multiplying or dividing the frequencies in the sequence of fifths by appropri-

ate powers of 2, the octave transposing factor. F(86.9) is multiplied by 4 

(i.e. 22) to obtain an F at 347.6 cps. C(130.4) is multiplied by 2 to get the 

bottom tone of the scale 260.8 the frequency of middle C. The octave, c, is 

gotten by multiplying C(130.4) by 4, resulting in c(521.6). G(195.6) is multi-

plied by 2 to get 391.2 cps. E(660) is divided by 2 to get 330 cps. Finally, B 

at (990) is divided by 2 to get 495 cps. The results are shown in an increas-

ing scale of frequencies in the table: 
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Pythagorean   Letter       

Scale Tone   Designation   Frequency      Derivation   

      1                    C                 260.8         130.4 X 21   

      2                    D                 293.3          293.3 X 21   

      3                    E                  330            660/2   

      4                    F                 347.6          86.9 X 22   

      5                    G                 391.2         195.6 X 21   

      6                    A                  440            440 X 20   

      7                    B                  495            990/2   

      8                    c                  521.6         130.4 X 22   

    

(Figure 16)  illustrates how the tones are notated as notes on the   staves 

of a musical score.   The 5th scale tone is the tone G and its  numerical 

designation explains where the name "perfect fifth" comes from. Also note 

that the scale is essentially completed with the presence of the 8th tone, c, 

hence the name "octave." 

Figure 16
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Historically, the C Major scale did not become commonly used in 

musical composition until the advent of harmony and the system of 

tonality in the 17th century even though the principles of its construc- 

tion were understood since the time of Pythagoras (c. 6th century B.C.). 

Despite the purity of fifths the Pythagorean scale produces, it is not 

the scale that is commonly used in musical practice today. The reasons 

for this will be explored later. For the present, we shall return for 

a look at the violin again (Figure 14). 
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It can be seen that all of the strings have a vibrating length which 

extends from the bridge to the nut. The pitch (frequency) of each string 

can be varied by applying tension at the pegs or by varying the weight of 

each string according to its basic pitch. Thus, the lower strings are thicker 

and given added weight by winding with metal. The additional weight allows 

for tuning the strings to their proper pitches without much differences in the 

tensions applied. In 1636 the mathematician, Mersenne, incorporated all of 

these variables into a general law for the vibrations of fixed strings. This 

law is expressed by the formula f = 1/(2L) SQR(X/M), where f is the fre-

quency of the string; L is the length of the string that vibrates; X is the 

stretching force or tension on the string; and M is the mass per unit length 

of the string. As frequently happens in mathematics, certain laws are dis-

covered simultaneously and independently. 

This law was named after Mersenne because he published his for-

mula two years before Galileo presented the same results. The part of the 

formula which deals with the length of the string is sometimes called the 

Law of Pythagoras, because it was in the course of studying the length of 

vibrating strings that Pythagoras was reputed to have derived the basic nu-

merical relationships for the musical intervals. 

The violinist can check the tuning of his strings by applying the Py-

thagorean Law. For example (Figure 17), if he presses the A string to the 

fingerboard at a distance of 1/3 the length of the string from the nut and 

bows across the remaining 2/3 of the string, the note E will be sounded 

having the same pitch as the open E string, assuming the E string was 

tuned correctly by the harmonizing technique described earlier. Thus, 2/3 of 

the length of the A string gives a tone which has 3/2 of the frequency of A. 
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Since 2/3 and 3/2 are reciprocals, this shows the frequency of a string is in-

versely proportional to its length (Figure 18). In actuality, the stopped tone 

E on the A string will sound different than the open E string, even though 

they have the same pitch. 

Figure 17                                  
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Figure 18

28



The difference we hear is the result of tone quality.(S8) 

http://www.culturalmath.com/media/Sound-08.mp3

The open E sounds louder and more vibrant because it is richer in what are 

called "harmonics" or "overtones." These are tones higher in frequency 

than the tone E which enter into the production of most musical tones. This 

occurs because musical instruments are more complicated than a tuning 

fork in their vibrations. The analysis of a violin string shows that it not only 

vibrates as a whole, but in parts as well (Figure 19). These vibrating 

parts are integral fractions of the whole string and by the reciprocal 

relationship they result in tones being produced that are integral multi- 

pIes of the fundamental tone being played. Fortunately, the intensity of 

these bowed violin tones comply with the inverse square law, otherwise 

they would completely mask the sound of the fundamental tone. The fore- 

going is summarized in the following table: 

THE E STRING AND ITS HARMONICS 

Harmonic   Frequency   Ratio   Intensity   
     1               660            1:1       1/1   
     2             1320            2:1       1/4   
     3             1980            3:1       1/9   
     4             2640            4:1       1/16   
     5             3300            5:1       1/25   
     6             3960            6:1       1/36   
     7             4620            7:1       1/49   
     8             5280            8:1       1/64   

Although the series theoretically goes on to infinity, the law of decreasing 

intensities soon makes the upper harmonics inaudible.
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Figure 19
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The resonating box of a violin also contributes its own peculiar vibra-

tions when the strings are set in motion. In fact, it is this characteristic that 

distinguishes the superb sound of the famous Stradivarius violins. 

(Figure 20) (S9) (L6): http://en.wikipedia.org/wiki/Stradivarius

http://www.culturalmath.com/media/Sound-09.mp3

Emile Leipps5 believes that the famous violin makers like Antonio 

Stradivarius incorporated the Golden Section6 consciously in the dimension 

of their instruments. How this may have contributed to their superior sonics 

is still not understood, but it is an interesting sidelight in the relationship 

between mathematics and music. 

Figure 20                                         
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The production of harmonics is also true of a vibrating air column, the 

essential tone-producing mechanism of the woodwind instruments. All of 

these additional tones are integrated together with the fundamental pitch 

to yield what is called "tone color" or "tone quality." Each instrument pro-

duces its own characteristic spectrum of harmonics or "partials" as they are 

also called. This is the reason why the same tone E sounds so different 

when played by the violin as compared to the oboe. Thanks to the mathem-

atical work of the great French scientist, Joseph Fourier (1768-1839), and 

the recent developments in electronics, we are now able to visualize the 

complex wave patterns that are produced by the different instruments. This 

branch of mathematics is known as "harmonic analysis" and requires a 

knowledge of trigonometry and calculus. Students in their second year of 

calculus study Fourier's theorem. (Figure 21) shows the picture of a typical 

sound wave form as reproduced on an oscilloscope. 

L7:  http://en.wikipedia.org/wiki/Fourier_analysis
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Figure 21
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We are now in a position to understand why the open E string sounds 

different than the stopped E fingered on the A string. The open E allows the 

higher coloring tones to be more audible because the ends of the vibrating 

string are pressed against the hard material of the bridge and nut. The 

stopped E has a less well defined node where the softer material of the fin-

ger produces more damping of the higher partials. In melodic passages 

where evenness of tone is desired, care must be exercised by the violinist 

to finger the notes so that the open strings are avoided. Otherwise these 

open tones would stand out too much. We are also able to understand 

more completely why reverberation is such an important aspect of good 

listening. In a hall with good reverberation, the upper harmonics are more 

audible and this contributes to proper realization of tone color. This is the 

essential ingredient for any performance to come alive. 

In recent years, experiments in acoustics have verified the import-

ance of another factor in tone quality. Every instrument has a characteristic 

attack in the tones it produces. This onset. transient, as it is called, is 

coupled with a decay transient that is specific to each tone an instrument 

sounds. For example, the brilliant tone of the 'trumpet as compared to the 

violin is explained by Winkel as follows: "In the case of the trumpet, the first 

and second partials develop more slowly than the upper partials. This is the 

reason why the trumpet sounds more clearly defined, with more funda-

mental, than the violin .... The short onset time of the trumpet (20 milli-

seconds) permits many more partials ... “6  It is the presence of the upper 

partials that are increasingly dissonant with respect to the fundamental that 

contributes to the "brassy" tones of the trumpet. 

As the tuning of the orchestra comes to completion, there is an ex-

pectant hush in the hall. The sound of mounting applause signifies the 
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entry of the conductor who bows in acknowledgement and mounts the po-

dium. So much has been written about the role of the conductor that it 

would be impossible to cover it here. By the time he raises his baton to be-

gin, most of his work has already been accomplished. It is during rehears-

als that he communicates his detailed interpretive conception of the work to 

be played. He must bring into proper balance all of the elements that lead 

to the realization of the score in sound. At the concert, this integration is 

conveyed by a series of physically expressed cues which serve to remind 

the players of what was communicated at the rehearsals. On a higher level, 

the conductor becomes a physical embodiment of the emotional and philo-

sophical meaning of the music. He is the medium through which the com-

poser "speaks." 

Before leaving this chapter, listen to the following two examples of 

how two composers have integrated the foundations of the discussion 

above.

In Aaron Copland’s ballet Rodeo, the opening of the slow waltz sec-

tion imitates the tuning of the orchestra (S10), and the opening of Alban 

Berg’s violin concerto utilizes the sequence of perfect fifths as a serial 

motive (S11). 

http://www.culturalmath.com/media/Sound-10.mp3

http://www.culturalmath.com/media/Sound-11.mp3
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